LABELLING GRAPHS WITH THE CIRCULAR DIFFERENCE
نویسندگان
چکیده
منابع مشابه
Labelling Graphs with the Circular Difference∗
For positive integers k and d ≥ 2, a k-S(d, 1)-labelling of a graph G is a function on the vertex set of G, f : V (G) → {0, 1, 2, · · · , k− 1}, such that |f(u)− f(v)|k ≥ { d if dG(u, v) = 1; 1 if dG(u, v) = 2, where |x|k = min{|x|, k − |x|} is the circular difference modulo k. In general, this kind of labelling is called the S(d, 1)-labelling. The σdnumber of G, σd(G), is the minimum k of a k-...
متن کاملDifference labelling of cacti
A graph G is a difference graph iff there exists S ⊂ IN such that G is isomorphic to the graph DG(S) = (V,E), where V = S and E = {{i, j} : i, j ∈ V ∧ |i− j| ∈ V }. It is known that trees, cycles, complete graphs, the complete bipartite graphs Kn,n and Kn,n−1, pyramids and n-sided prisms (n ≥ 4) are difference graphs (cf. [4]). Giving a special labelling algorithm, we prove that cacti with a gi...
متن کاملDifference labelling of digraphs
A digraph G is a difference digraph iff there exists an S ⊂ IN such that G is isomorphic to the digraph DD(S) = (V,A), where V = S and A = {(i, j) : i, j ∈ V ∧ i− j ∈ V }. For some classes of digraphs, e.g. alternating trees, oriented cycles, tournaments etc., it is known, under which conditions these digraphs are difference digraphs (cf. [5]). We generalize the so-called sourcejoin (a construc...
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کامل$k$-Total difference cordial graphs
Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2000
ISSN: 1027-5487
DOI: 10.11650/twjm/1500407256